Friday, March 13, 2015

Photoflash Glitch on Raspberry Pi 2

This video show my test of Photoflash Glitch on Raspberry Pi 2. The RPi 2 is running a Python program to toggle LED 0.5 sec On/0.5 sec Off. Once the RPi 2 crashed, the LED will stop blinking, re-start is needed.



from Wikikpedia.org ~

In February 2015, a switched-mode power supply chip, designated U16, of the Raspberry Pi 2 model B version 1.1 (the initially released version) was found to be vulnerable to flashes of light, particularly the light from xenon camera flashes and green and red laser pointers. However, other bright lights, particularly ones that are on continuously, were found to have no effect. The symptom was the Raspberry Pi 2 spontaneously rebooting or turning off when these lights were flashed at the chip. Initially, some users and commenters suspected that the electromagnetic pulse from the xenon flash tube was causing the problem by interfering with the computer's digital circuitry, but this was ruled out by tests where the light was either blocked by a card or aimed at the other side of the Raspberry Pi 2, both of which did not cause a problem. The problem was narrowed down to the U16 chip by covering first the system on a chip (main processor) and then U16 with opaque poster mounting compound. Light being the sole culprit, instead of EMP, was further confirmed by the laser pointer tests, where it was also found that less opaque covering was needed to shield against the laser pointers than to shield against the xenon flashes. The U16 chip seems to be bare silicon without a plastic cover (i.e. a chip-scale package or wafer-level package), which would, if present, block the light. Based on the facts that the chip, like all semiconductors, is light-sensitive (photovoltaic effect), that silicon is transparent to infrared light, and that xenon flashes emit more infrared light than laser pointers (therefore requiring more light shielding), it is currently thought that this combination of factors allows the sudden bright infrared light to cause an instability in the output voltage of the power supply, triggering shutdown or restart of the Raspberry Pi 2. Unofficial workarounds include covering U16 with opaque material (such as electrical tape, lacquer, poster mounting compound, or even balled-up bread), putting the Raspberry Pi 2 in a case, and avoiding taking photos of the top side of the board with a xenon flash. This issue was not caught before the release of the Raspberry Pi 2 because while commercial electronic devices are routinely subjected to tests of susceptibility to radio interference, it is not standard or common practice to test their susceptibility to optical interference.

No comments: